
The Secure Pipes and Filters pattern

Eduardo B. Fernandez
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431, USA

ed@cse.fau.edu

Jorge L. Ortega-Arjona
Departamento de Matemáticas
Facultad de Ciencias, UNAM

México
jloa@ciencias.unam.mx

Abstract—Many applications process or transform a stream
of data. Such applications are organized as a sequence of
different stages, which may be independent enough to be
simultaneously carried out. The original Pipes and Filters
pattern and the Parallel Pipes and Filters pattern describe
those actions. We present here the Secure Pipes and Filters
pattern as a secure version of the original patterns, which
contains a minimal set of security mechanisms to provide a
set of basic security functions. The Secure Pipes and Filters
pattern includes ways to add security controls at each stage
of processing, controlling that only predefined operations are
applied to data streams, as well as securing data movement.

Keywords-Security; Pipes and Filters pattern; security con-
trols

I. INTRODUCTION

Many applications process or transform a stream of data.
Such applications are organized as a sequence of different
stages, which may be independent enough to be simultane-
ously carried out. The value of this organization is due to
several reasons: every component performs specialized func-
tions over the data stream, the global architecture requires
this flow, or the whole system performs its functionality in a
more efficient and flexible way. Every time the data reaches
a different stage, different functions may be applied at that
stage. In its most common form, the filtering just applies
automatic, predefined data transformations. Examples of this
type include compilers [4] and document generation [20].
In some applications, however, the pipeline implements a
business process where the data transformations may include
several operations applied interactively by people. An exam-
ple of the latter case is a pipeline of workers processing tax
returns.

This organization of the process into stages has been
converted into a pattern: the Pipes and Filters pattern [4],
[16]. However, the descriptions provided for this pattern
take into consideration only its functional properties, and
a few non-functional properties such as its potential for
improving performance [16]. Other non-functional proper-
ties, such as security, are not considered. [13] indicates that
each filter needs its own security but doesn’t provide details.
As indicated, the use of Pipes and Filters is capable of
fitting either a human-interactive system or an automatic

processing environment. Of course, between them there is a
great difference of performance, since humans require more
time than processors. But the principle is the same for both:
there are components (filters) where data is modified with
certain objectives, and communications (pipes) that allow
the flow of data between components. Moreover, security is
an issue that can be added in both situations: when using a
human-interactive application, we need to make sure that
the person interacting with the filter is the person who
has authorization to “process” it. On the other hand, in an
automatic processing environment, we need to control before
the stream passes through the pipeline who can define the
operations to be applied to the stream. We can also need
security functions such as logging and authentication and
the transfer of data between stages may also need to be
protected.

We have proposed a methodology that helps developers
build secure systems through the use of patterns [8]. Our
discussion here is independent of this methodology although
this paper is a consequence of this work. Patterns provide
solutions to recurrent problems and are abstractions of best
practices. We see the use of patterns as a fundamental way
to incorporate security principles in the design process even
by people having little experience with security practices.
Security patterns are relatively new and starting to be
accepted by industry because they are useful to guide the
security design of systems by providing generic solutions
that can prevent a variety of attacks [18]. Our methodology
starts from the analysis of use cases and their threats and
obtains a conceptual model where security mechanisms are
embedded in the form of pattern instantiations. We them
map this model to the software artifacts of the design
stage. We have shown how patterns allow us to define
secure architectures for middleware systems [9]. We build a
secure architecture as a composition of functional (insecure)
patterns with patterns that provide specific security functions
that can control some threats. To use our approach we need
a catalog of relevant patterns. In particular, we are writing
secure versions of the distribution patterns in [4]. Each
pattern is made of a core distribution pattern, e.g. Broker, to
which a minimal set of security patterns is added to provide
a secure system. An important pattern in distributed systems



is the Secure Pipes and Filters pattern and we present here
a secure version, the Secure Pipes and Filters. This pattern
is oriented to designers of pipeline systems, who need to
plan where they should apply security controls, and to users
of such systems, who need to configure these controls. The
pattern considers the worst case, where we need security
controls in each unit.

Section II presents the pattern following the template used
in [4]. We do not repeat here in detail the functional features
of this pattern, we only show its security properties. Section
III provides some conclusions and future work.

II. THE SECURE PIPES AND FILTERS PATTERN

A. Example

ArtisticRenderings is a company that prepares brochures
and reports for marketing real estate, stocks, and all kind of
products. To prepare each brochure we need a product spe-
cialist, a graphic designer, and an artist. To insert information
from databases, e.g. sales statistics, we need some IT people.
The whole process is under the control of a supervisor. Each
person has its own interface and once they complete their
jobs their inputs will be applied in sequence to the stream
of documents. However, some documents are sensitive and
we need to control who makes the changes or a disgruntled
employee might introduce incorrect contents.

B. Context

We consider Pipes and Filters software or other processing
systems which are used to process data streams. Some of
them may be parallel, attempting to improve the process
performance. The execution platform for this kind of system
is frequently a distributed one, whose components may
require a certain level of security for processing the stream
of data. “Parallel” here means that several components
(whether human or automatic) act simultaneously. Even a
human-interactive Pipes and Filters aims to improve perfor-
mance. Even when we don’t have significant performance
improvement this architecture may be valuable for flexibility
reasons or to have a systematic, well-structured process.

C. Problem

How to keep an acceptable level of security among the
components of the whole pipeline system in the presence of
possible attacks?

The essence of the Pipes and Filters pattern is that every
time data reaches a different stage, different functions are
applied on it, and in a secure version these actions should
be controlled. In this kind of system, we may also need the
flexibility to reorder the steps of the process or change the
processing steps. In the example above, a new person may
be assigned to the workflow to perform additional functions
on the documents which may require adding an extra step.
How do we control the actions to be performed in a data
pipeline? Additionally, the data may be moved along the

pipeline using insecure channels and the users defining the
data transformations may be remote.

This problem requires considering the following forces:
• The system may need to control in each stage of

processing who can do what (what operations can be
applied) with the data in the pipeline. This may be
necessary in both automatic and interactive pipelines.
Otherwise, employees might introduce illegal content
or filter wanted aspects.

• We might require that before the data is accepted by the
next stage, the previous stage or the message carrying
the data must be authenticated. Otherwise, an impostor
might send the data to be processed.

• Before sending the data in the pipes we may need to
hide it to prevent eavesdropping.

• Due to regulatory constraints, work changes, or effi-
ciency, some documents may need extra stages or skip
stages. We need to be able to reconfigure the number
or order of the steps. This reconfiguration should be
controlled or a user might skip needed stages or add
unintended stages.

• We should keep track of any actions applied on the
data in cases where legal documents or regulation-
compliance is involved.

• The security controls should not affect the functional
use of the system.

• The security controls should not significantly affect
performance.

D. Solution

The Secure Pipes and Filters pattern provides a secure
way to process data into different stages or steps, by adding
in each of them basic security mechanisms (as instances of
security patterns) to provide authentication, authorization,
information hiding, and logging. Because the functions to be
performed in each stage depend on persons doing specific
tasks, we use a Role-Based Access Control (RBAC) model
[7] to describe their required rights. A RBAC model assigns
rights to roles to access data or resources in specific ways.
Individual users may belong to one or more roles.

E. Structure

Figure 1 shows a class model for the RBAC pattern [7],
[18]. In this model, Users are members of Roles and Rights
are assigned to roles. A right defines the access type that
can be applied by a role to a Protection Object.

Figure 1. Class diagram for the Role-Based Access Control pattern



Pattern instances corresponding to security mechanisms
have been added to the Pipes and Filters pattern in Figure
2. Since we are considering a set of stages the pattern
is clearer by showing an object diagram (describing three
typical stages) and not a class diagram. The subsystems
named Authenticator are instances of the Authenticator
pattern [18] and allow each Filter to authenticate the sender
of the data it is receiving. Log i indicates instances of the
Logging pattern, used to keep track of any accesses to the
data. Objects with the stereotype <<role>> and Right
are instances of the RBAC pattern. For example, Role1
has the right to apply operations op1 and op2 to the data
in Filter i. The Reference Monitor subsystem indicates
the enforcement of the authorization rights defined by the
RBAC instances [18]. We show the Reference Monitor as a
shared resource and the Authenticators as individual for each
stage; their actual distribution depends on the distribution
architecture of the complete system. In order to control
the reconfiguration of the stages, the RBAC pattern is also
applied to the pipeline structure so that only someone with
an administrator role (Role3) could perform any changes
to it.

Figure 2. Object diagram for the Secure Pipes and Filters pattern

The RBAC pattern provides the option to abstract different
roles within the data flow. It could be possible that we need
to work with individual subjects instead of roles; in this case
implementing the Access Matrix should be a better approach
[7]. The link between stages could be subject to attacks, and
optional operations of encryption and decryption could be
implemented in each filter, as well as digital signatures in
each data message (not shown in the diagram).

F. Dynamics

Figure 3 shows the use case where a subject with a specific
role tries to execute an operation, op3, on a document. The
Reference Monitor checks if its role allows the operation
and if true it reads data from the input pipe, Pipe i, to
the filter where op3 is applied. After the operation the data
is moved to the next pipe, Pipe j.

Figure 3. Sequence diagram for use case to apply an operation on a data
stream

G. Implementation

We follow the steps suggested in [4] and indicate where
security is needed:

1) Divide the application into a sequence of stages. As
we discussed in [8], who should have access to which
operations or results from each stage should be defined
in the conceptual model. When the application is
divided into stages we need to define how the rights
in the complete model are reflected in each stage.

2) Define the data format to be passed along each pipe.
This aspect has no effect on security.

3) Perform threat enumeration [8]and risk analysis. This
is necessary to decide about what security mechanisms
to add in each stage.

4) Decide how to implement each pipe connection. As-
pects such as active or passive components, push or
pull movement of data are defined at this moment.
At this moment we have to decide if we use or
not authentication between filters and if we do, what
type of authentication. For communications within the
same physical building, filter authentication may not
be required although user authentication to the system
is always needed.

5) Design and implement the filters. Each filter enforces
the rights defined in the first implementation step and
must have a Reference Monitor and a way to access
the authorization rules. In distributed systems, one
needs to decide where these rules should be stored.
Filters also implement logging as well as encryp-
tion/decryption.

6) Design error handling. From the security side this
implies handling security violations. This handling is
application-dependent and no general policy is possi-
ble.

7) Set up the processing pipeline. The initial configura-
tion as well as changes to the configuration must be
restricted only to administrators.



H. Example Resolved

We implemented RBAC in the Pipes and Filters of the
example. Now people making changes to the documents
need to be authorized before they can make any change.
The operations they can apply depend on their roles with
respect to the application. Logging protects the company in
case they need to show that they comply with regulations
and they can track who made a specific change to a given
document. Authentication is needed to apply authorization
and maybe in between stages if necessary.

I. Known Uses

Microsoft’s BizTalk Server 2004 [1]. BizTalk Server
2004 can implement Pipes and Filters. In addition to security
features that are provided by the transport, such as en-
cryption when using HTTPS, BizTalk Server 2004 provides
security at the message level. BizTalk Server 2004 can
receive decrypted messages and validate digital signatures
that are attached to these messages. Similarly, it can encrypt
messages and attach digital signatures to messages before
sending them.

Cocoon [6]. The Apache Cocoon is a web development
framework using components. It can be used to build XML
pipelines, in which security restrictions can be added.

The tax offices of some countries implement a human
pipeline to process tax returns. Workers may check different
aspects of a tax return either manually or using computers
and need to be authorized to do this.

[20] discusses the use of XML pipelines for document
preparation, including stages for adding content, formatting,
and personalization. What is done in each stage can be
controlled.

Pipelines are common for data reduction when there
are large volumes of data. [19] discusses a data reduction
pipeline for spectroscopic data, where different transforma-
tions by different researchers are applied at each stage. What
is done at each stage is controlled according to the functions
of the researchers.

J. Consequences

The use of this pattern yields the following benefits:
• We have applied the principle of “defense in depth”,

defining a coherent set of security mechanisms that
define a secure core for this application. In some cases,
specific mechanisms can be left out, being careful
about security consistency; for example, authorization
requires authentication. In other cases, more security
controls may be needed to prevent for example, con-
flicts of interest.

• We can assign privileges according to the functions
needed at each stage of processing and the roles of
those performing the functions. The use of operations
over the data, can be restricted according to the rules
of either RBAC or Access Matrix models.

• Each Filter stage can authenticate its users before they
are authorized to perform specific functions and can
authenticate the Filter sending data to it. Authentication
is necessary if we apply authorization at each filter.

• The use of encryption between stages is possible,
adding the possibilities of secure messages (prevents
eavesdropping) and digital signatures (confirm the ori-
gin of a message).

• The Administrator role can control the reconfiguration
of stages to accommodate changes in the process.

• Logging can be performed in each stage to keep track of
any accesses and changes to the data. We can prove this
way we have followed regulations, we can prosecute
illegal actions, and we can improve the system if it did
not prevent an attack.

• The security restrictions are transparent to the users
(while they do not attempt illegal actions).

Applying this pattern imposes the following liabilities:
• The general performance of the system worsens due to

the overhead of the security checks. With careful imple-
mentations of these functions the loss in performance
should be small. For example, encryption/decryption
takes time and should be used only when needed;
access control to the filters happens only when a new
type of data is being analyzed. In parallel pipelines the
performance loss can be further reduced by performing
some security functions in parallel with normal func-
tions.

• The system is more complex, due to the extra services
that we have added.

K. See Also

• [4] and [14] present the basic Pipes and Filters, without
security controls.

• The Access Matrix, RBAC, and Authenticator patterns
can be used to secure the stages [18].

• The Secure Channel pattern can be used to secure the
communications channels [2].

III. CONCLUSION

The use of data pipelines or streams is frequent in
software design. Following the principle that security must
be applied in all stages of the software development, the
designer should include security aspects in any application
using pipelines. As mentioned earlier, this pattern may
become part of a catalog of security patterns. Combined
with other similar patterns, it gives a designer a choice of
possibilities when building the middleware of a complex
system [9]. A designer with little security experience can
use a secure pipeline that comes with a basic set of security
services.

We just presented a Secure Blackboard pattern [17]. For
completion, we still need Secure Adapter, Secure MVC, and
Secure Component; these are now in preparation. We also



need more patterns for web services security. Implementing
these patterns together in a real application would be another
useful direction that would confirm the value of using
patterns.

REFERENCES

[1] Implementing Pipes and Filters with BizTalk Server 2004
http://msdn2.microsoft.com/en-us/library/ms978668.aspx

[2] A. Braga, C. Rubira, and R. Dahab, “Tropyc: A pattern
language for cryptographic object-oriented software”, Chapter
16 in Pattern Languages of Program Design 4 (N. Harrison,
B. Foote, and H. Rohnert, Eds.). Also in Procs. of PLoP’98,
http://jerry.cs.uiuc.edu/ plop/plop98/final submissions/

[3] W. Brogden, “Using XML pipelines” Part
1: Sept. 6, 2006, Part 2: Oct. 3, 2006,
http://searchwebservices.techtarget.com/home/0,289692,sid26,00.html

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal.
Pattern-Oriented Software Architecture: A System of Patterns
Volume 1, West Sussex, England: John Wiley & Sons, 1996.

[5] F. Buschmann, K. Henney, and D.C. Schmidt, Pattern-Oriented
Software Architecture, Vol. 4: A Pattern Language for Dis-
tributed Computing J. Wiley & Sons, UK, 2007.

[6] The Apache Cocoon project. http://cocoon.apache.org

[7] E. B. Fernandez and R. Pan, “A Pattern Language for security
models”, Procs. of the 8th Annual Conference on Pattern
Languages of Programs (PLoP 2001) 11-15 Septem-
ber 2001, Allerton Park Monticello, Illinois, USA, 2001.
http://jerry.cs.uiuc.edu/ plop/plop2001/accepted submissions

[8] E. B. Fernandez, M.M. Larrondo-Petrie, T. Sorgente, and M.
VanHilst, “A methodology to develop secure systems using
patterns”, Chapter 5 in Integrating security and software en-
gineering: Advances and future vision H. Mouratidis and P.
Giorgini (Eds.), IDEA Press, 2006, 107-126.

[9] E. B. Fernandez and M. M. Larrondo-Petrie, “Developing
secure architectures for middleware systems”, Procs. of CLEI
2006. (XXXII Conferencia Latinoamericana de Informática).

[10] E.B.Fernandez, N.A.Delessy, and M.M. Larrondo-Petrie,
“Patterns for web services security”, in Best Practices and
Methodologies in Service-Oriented Architectures L. A. Skar
and A.A.Bjerkestrand (Eds.), 29-39, part of OOPSLA 2006,
the 21st Int. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, Portland,OR, ACM, October 22-
26.

[11] E. B. Fernandez, D. L. laRed M., J. Forneron, V. E. Uribe, and
G. Rodriguez G. “A secure analysis pattern for handling legal
cases”, Procs. of the 6th Latin American Conference on Pattern
Languages of Programming (SugarLoafPLoP’2007) 178-187.
http://sugarloafplop.dsc.upe.br/AnaisSugar2007 WEB.pdf

[12] E.B.Fernandez, M. Fonoage, M. VanHilst, and M. Marta,
“The secure three-tier architecture”, Procs. of the Second
Workshop on Engineering Complex Distributed Systems (ECDS
2008) Barcelona, Spain, March 4-7, 2008. 555-560.

[13] N. Harrison and P. Avgeriou, “Leveraging Architecture Pat-
terns to Satisfy Quality Attributes”, First European Conference
on Software Architecture Madrid, Spain, September 24-26,
2007, Springer Lecture Notes in Computer Science.

[14] Microsoft, “Pipes and filters”
http://msdn2.microsoft.com/en-us/library/ms978599.aspx

[15] P. Morrison and E.B.Fernandez, “Securing the Broker
pattern”, Procs. of the 11th European Conf. on
Pattern Languages of Programs (EuroPLoP 2006)
http://www.hillside.net/europlop/

[16] J.L. Ortega-Arjona, “The Pipes and Filters Pattern. A
Functional Parallelism Architectural Pattern for Parallel Pro-
gramming.” Procs.of the 10th European Conference on Pattern
Languages of Programming and Computing (EuroPLoP 2005)
http://www.matematicas.unam.mx/jloa/publicaciones/EuroPLoP2005.pdf

[17] J. L. Ortega-Arjona and E.B.Fernandez, “The Secure Black-
board pattern”. Procs. 15th Int.Conference on Pattern Lan-
guages of Programs (PLoP 2008).

[18] M. Schumacher, E.B.Fernandez, D. Hybertson, F.
Buschmann, and P. Sommerlad, Security Patterns: Integrating
security and systems engineering Wiley 2006.

[19] M. Scodeggio et al., “The VVDS data-reduction pipeline:
Introducing VIPGI, the VIMOS interactive pipeline and graph-
ical interface”, Pubs. of the Astronomical Society of the Pacific
Vol. 117, November 2005, 1284-1295.

[20] J. Tennison, “Managing complex doc-
ument generation through pipelining”
http://idealliance.org/proceedings/xtech05/papers/04-03-01/


